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ABSTRACT

ZACA−lipase-catalyzed acetylation tandem process has been shown to proceed satisfactorily with either TBS-protected 4-penten-1-ol or 3-buten-
1-ol to provide the corresponding enantiomerically pure ( R)-2-ethyl-1-alkanols. Either ( R)-5 or (R)-6 was converted to 3 in seven steps. The
other fragment 4 was synthesized in nine steps from ( −)-(S)-citronellol. Conversion of 3 and 4 into 99% pure fluvirucinine A 1 was achieved in
four steps via amidation −ring closing metathesis, the overall yield in the longest linear sequence being 34% (13 steps).

Fluvirucinine A1 (1a) is an aglycone of fluvirucin A1 (1b),
a member of antibiotics isolated from the fermentation broth
of unidentified actinomycete strains exhibiting considerable
inhibitory activity against influenza A virus.1 It has recently
been synthesized by Suh2 in 22 linear steps in about 3%
overall yield. Our recent development of the ZACA-lipase-
catalyzed acetylation tandem process3 permitting efficient
and selective syntheses of enantiomerically pure 2-methyl-
1-alkanols prompted us to see if this tandem process would

be readily adaptable to the synthesis of 2-alkyl-1-alkanols,
where the 2-alkyl group is ethyl or a higher primary alkyl
group. If so, a convergent and highly efficient synthesis of
1a via 2, which in turn should be obtained from3 and4, as
outlined in a retrosynthetic analysis shown in Scheme 1
would be feasible.

The first crucial task of devising efficient and enantiose-
lective routes to3 was achieved in two similar manners, as
summarized in Scheme 2. In Route I, commercially available
4-penten-1-ol was protected with TBSCl and imidazole in
98% yield and subjected to the ZACA reaction4-6 with Et3-
Al (2 equiv), isobutylaluminoxane (IBAO, 1 equiv) generated
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in situ by treatingiBu3Al with 1 molar equiv of H2O, and
just 0.1 mol % of (-)-(NMI)2ZrCl2. The crude product
isolated in 82% yield was shown to be 90% ee or 95%R
and purified by selective acetylation with vinyl acetate (5
equiv) and Amano PS lipase (30 mg/mmol) to give enan-
tiomerically pure (g98% ee) (R)-5in 75% recovery. The
results clearly indicate that the ZACA-lipase-catalyzed
acetylation tandem process promises to provide a very
favorable route to a wide range of (R)-2-ethyl-1-alkanols.
After six additional and conventional steps, including forma-
tion and reduction of an azide, (R)-3 of g98% ee was
obtained in 38% yield over eight steps from 4-penten-1-ol
(Route I in Scheme 2). Similarly, 3-buten-1-ol (Aldrich) was
converted to 4-TBS-protected (R)-2-ethyl-1,4-butanediol (6)
of g98% ee in 67% yield in just two steps and one
purification with vinyl acetate and Amano PS Lipase.
Conversion of6 into 3 also required six well-known steps,
including cyanation and reduction with LiAlH4 of the nitrile
thus formed. Thus, (R)-3of g98% ee was produced in 46%
yield over eight steps from 3-buten-1-ol. A somewhat higher
product yield of 46% and the use of less expensive 3-buten-
1-ol make Route II in Scheme 2 somewhat more attractive
than Route I. It should also be noted that both5 and 6
promise to serve as potentially versatile Et-branched difunc-
tional chiral synthons.

Preparation of the other key intermediate4 via ZACA
reaction of TBS-protected 3-buten-1-ol with Me3Al in a
manner similar to that employed in Route II in Scheme 2 is
conceivable and was indeed considered first. In view of the
ready availability of (-)-(S)-â-citronellol, however, its
conversion into4 (dr g98% by 13C NMR) was performed
in nine steps, including the Brown crotylboration7 and OsO4-

catalyzed oxidative alkene cleavage8 with NaIO4 used twice.
The whole transformation proceeded satisfactorily in 44%
overall yield, as summarized in Scheme 3.

Conversion of the two key intermediates3 and4 into a
14-membered lactam9 was achieved in two steps in 83%
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combined yield. Thus, amidation of3 with 4 by the use of
N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochlo-
ride (EDCI) and 1-hydroxybenzotriazole (HOBt)9 produced
2 in 90% yield, which was then subjected to the Ru-catalyzed
ring closing metathesis (RCM)10 with 10 mol % of PhCHd
Ru(PCy3)2Cl2 as a catalyst to produce the desired macrolac-
tam 9 in 92% yield. Its hydrogenation over Pd/C (5%)
followed by desilylation with TBAF furnished fluvirucinine
A1 (1a) in 94% yield over two steps (34% over 13 steps

from (-)-(S)-â-citronellol) (Scheme 4). The1H and13C NMR
spectra as well as the specific rotation [R]23

D ) +138.6 (c
0.2, CH3OH) are in good agreement with those reported in
the literature.1,2

In summary, the ZACA reaction of TBS-protected 3-buten-
1-ol or 4-penten-1-ol with Et3Al, isobutylaluminoxane (IBAO),
and 0.1 mol % of (-)-(NMI)2ZrCl2 proceeds in about 85%
yield and in 90% ee. Furthermore, the crude product thus
obtained can be readily purified by Amano PS lipase-
catalyzed acetylation with vinyl acetate to give (R)-5 or (R)-
6, respectively, ofg98% ee in 75-80% recovery. The ready
access to enantiomerically pure (R)-5 or (R)-6 permits the
preparation of (R)-3of g98% ee in 46 or 38% yield over
eight steps from 3-buten-1-ol or 4-penten-ol, respectively.
Another satisfactory, albeit conventional, preparation of
isomerically pure4 from (-)-(S)-â-citronellol in 44% yield
over nine steps followed by a three-step conversion of3 and
4 into fluvirucinine A1 (1a) in 78% yield over four steps
has provided1a of g99% isomeric purity in 34% overall
yield in 13 steps from (-)-(S)-â-citronellol.
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